Abstract

Semantic segmentation of indoor scene images has a wide range of applications. However, due to a large number of classes and uneven distribution in indoor scenes, mislabels are often made when facing small objects or boundary regions. Technically, contextual information may benefit for segmentation results, but has not yet been exploited sufficiently. In this paper, we propose a learnable contextual regularization model for enhancing the semantic segmentation results of color indoor scene images. This regularization model is combined with a deep convolutional segmentation network without significantly increasing the number of additional parameters. Our model, derived from the inherent contextual regularization on the indoor scene objects, benefits much from the learnable constraint layers bridging the lower layers and the higher layers in the deep convolutional network. The constraint layers are further integrated with a weighted L1-norm based contextual regularization between the neighboring pixels of RGB values to improve the segmentation results. Experimental results on NYUDv2 indoor scene dataset demonstrate the effectiveness and efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.