Abstract

We propose a novel framework for learning many-to-many statistical mappings from musical measures to dance figures towards generating plausible music-driven dance choreographies. We obtain music-to-dance mappings through use of four statistical models: 1) musical measure models, representing a many-to-one relation, each of which associates different melody patterns to a given dance figure via a hidden Markov model (HMM); 2) exchangeable figures model, which captures the diversity in a dance performance through a one-to-many relation, extracted by unsupervised clustering of musical measure segments based on melodic similarity; 3) figure transition model, which captures the intrinsic dependencies of dance figure sequences via an n-gram model; 4) dance figure models, capturing the variations in the way particular dance figures are performed, by modeling the motion trajectory of each dance figure via an HMM. Based on the first three of these statistical mappings, we define a discrete HMM and synthesize alternative dance figure sequences by employing a modified Viterbi algorithm. The motion parameters of the dance figures in the synthesized choreography are then computed using the dance figure models. Finally, the generated motion parameters are animated synchronously with the musical audio using a 3-D character model. Objective and subjective evaluation results demonstrate that the proposed framework is able to produce compelling music-driven choreographies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.