Abstract

We describe a method for deepening a student's understanding of basic physics by asking the student to express physical ideas in a functional programming language. The method is implemented in a second-year course in computational physics at Lebanon Valley College. We argue that the structure of Newtonian mechanics is clarified by its expression in a language (Haskell) that supports higher-order functions, types, and type classes. In electromagnetic theory, the type signatures of functions that calculate electric and magnetic fields clearly express the functional dependency on the charge and current distributions that produce the fields. Many of the ideas in basic physics are well-captured by a type or a function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.