Abstract

With the recent advancements in machine learning theory, many commercial embedded micro-processors use neural network models for a variety of signal processing applications. However, their associated side-channel security vulnerabilities pose a major concern. There have been several proof-of-concept attacks demonstrating the extraction of their model parameters and input data. But, many of these attacks involve specific assumptions, have limited applicability, or pose huge overheads to the attacker. In this work, we study the side-channel vulnerabilities of embedded neural network implementations by recovering their parameters using timing-based information leakage and simple power analysis side-channel attacks. We demonstrate our attacks on popular micro-controller platforms over networks of different precisions such as floating point, fixed point, binary networks. We are able to successfully recover not only the model parameters but also the inputs for the above networks. Countermeasures against timing-based attacks are implemented and their overheads are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.