Abstract
We have investigated the effects of H2O2 (150 or 300 microM) on the ultrastructure and permeability of the pulmonary endothelium in rat lungs perfused for 60 min with buffered Hanks' bovine serum albumin medium. In one group of experiments, we examined the effect of H2O2 on the uptake and transport of cationized ferritin (CF) by endothelial cells in intra-acinar arteries, alveolar capillaries, and interlobular veins. The influence of the oxidant on endothelial adsorptive endocytic processes was assessed by measuring the density of ferritin particles in luminal vesicles, multivesicular bodies, and basal lamina. In a second group of experiments, we examined the effects of H2O2 on the fine structure and permeability to electron-dense macromolecules of arterial, microvascular, and venous endothelium. For this purpose, at the end of the 60-min perfusion with H2O2, CF was perfused to identify leaky vessels. We found that H2O2 caused a dose-dependent inhibition of transcytosis of CF in all vascular segments. At the lower dose of H2O2, inhibition of transcytotic activity was not associated with structural injury to the vascular endothelium or with elevation of wet-to-dry ratios. At the higher oxidant dose, inhibition of transcytosis was associated with leaky arterial endothelium and elevation of wet-to-dry ratios (6.44 +/- 0.12 vs. 5.64 +/- 0.16, P less than 0.02). The effects of H2)2 were prevented by adding catalase to the perfusate. The selective loss of structural integrity and leakiness of the arterial endothelium were diminished but not completely abolished by perfusing the oxidant retrograde from the venous side.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.