Abstract

Superconducting qubits, while promising for scalability and long coherence times, contain more than two energy levels, and therefore are susceptible to errors generated by the leakage of population outside of the computational subspace. Such leakage errors constitute a prominent roadblock towards fault-tolerant quantum computing (FTQC) with superconducting qubits. FTQC using topological codes is based on sequential measurements of multiqubit stabilizer operators. Here, we first propose a leakage-resilient procedure to perform repetitive measurements of multiqubit stabilizer operators, and then use this scheme as an ingredient to develop a leakage-resilient approach for surface code quantum error correction with superconducting circuits. Our protocol is based on swap operations between data and ancilla qubits at the end of every cycle, requiring read-out and reset operations on every physical qubit in the system, and thereby preventing persistent leakage errors from occurring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.