Abstract

In the present work, the annular static gaskets are considered as porous media and Darcy’s law is written for a steady radial flow of a compressible gas with a first order slip boundary conditions. From this, a simple equation is obtained that includes Klinkenberg’s intrinsic permeability factor kv of the gasket and the Knudsen number Kn′o defined with a characteristic length ℓ. The parameters kv and ℓ of the porous gasket are calculated from experimental results obtained with a reference gas at several gasket stress levels. Then, with kv and ℓ, the inverse procedure is performed to predict the leakage rate for three different gases. It is shown that the porous media model predicts leak rates with the same accuracy as the laminar-molecular flow (LMF) model of Marchand et al. However, the new model has the advantage of furnishing phenomenological information on the evolution of the intrinsic permeability and the gas flow regimes with the gasket compressive stress. It also enables quick identification of the part of leakage that occurs at the flange-gasket interface at low gasket stresses. At low gas pressure, the behavior of the apparent permeability diverges from that of Klinkenberg’s, indicating that the rarefaction effect becomes preponderant on the leak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.