Abstract

Recent trends in CMOS technology and scaling of devices clearly indicate that leakage power in digital circuits would be crucial and largely depend on the sub-threshold currents. Minimizing leakage, by power gating logic circuits using sleep transistors gives considerable power savings. However, this technique cannot be used in sequential circuits and memory cells, as it would result in loss of stored data. In this paper, we propose a novel circuit by applying a self-bias transistor (SBT) to minimize sub-threshold leakage currents in static and dynamic circuits. This circuit with SBTs, acts as a smart switch by virtually power gating either pull-up or pull-down logic, and causes a considerable reduction in leakage currents in both active and standby modes. A benchmark is simulated with 0.18 /spl mu/m CMOS technology in the Cadence Spectre circuit simulator. Results show significant reduction in leakage power, of up to 50% on average, for all possible states simulated in static and dynamic circuits by applying this proposed self-bias transistor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.