Abstract

Non-invasive side-channel attacks (SCAs) based on leakage power analysis (LPA) have received more attention recently, since leakage current has gradually become more dominant with further scaled technologies. For SRAM cells, LPA exploits the correlation between data in memory cells and their corresponding leakage power. This paper proposes a novel SRAM design in 7 nm node for countering LPA attacks, based on a single-ended PMOS-reading 9T (nine-transistor) cell design. The leakage current imbalance, delay, stability, and robustness of SRAM cells are examined for the proposed memory cell architecture with layout designs, and results are compared against other SRAM cell designs. Simulation results and failure of LPA attacks in case studies confirm the enhanced resilient behavior for the new SRAM cell design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.