Abstract

Mutants of Salmonella typhimurium with defects in the heptose region of the lipopolysaccharide (LPS) molecule (heptose-deficient, chemotype Re) leak periplasmic enzymes (acid phosphatase (EC 3.1.3.2), cyclic phosphodiesterase, ribonuclease I (EC 3.1.4.22), and phosphoglucose isomerase (EC 5.3.1.9) (PGI is at least partially periplasmic in E. coli and S. typhimurium; see below)) and do not leak an internal enzyme (glucose-6-phosphate dehydrogenase) into the growth medium. The extent of this leakage is markedly increased at higher temperature (42 degrees C). Leakage of periplasmic enzymes from the strains lacking units distal to heptose I in the LPS molecule (chemotype Rd2) occurs only at 42 degrees C, and not at 30 or 37 degrees C. The extent of leakage of these enzymes from smooth strain and mutants of other LPS chemotypes (Rc, Rd1) is not significant, and is not influenced by growth temperatures. The kinetics of leakage of periplasmic enzymes after shift to 42 degrees C in nutrient broth reveal an accelerated release into the medium from heptose-deficient strains of cyclic phosphodiesterase and ribonuclease I after 30 min at 42 degrees C, and phosphoglucose isomerase after 60 min at 42 degrees C; at 30 degrees C the rate of release of cyclic phosphodiesterase and ribonuclease I is relatively slower. After 60 min at 42 degrees C in nutrient broth, growth of these strains has either slowed down or stopped. In L-broth, which permits the growth of the heptose-deficient strain (SA1377) at 42 degrees C, leakage of cyclic phosphodiesterase and phosphoglucose isomerase occurs, whereas there is no detectable leakage of these enzymes from the isogenic smooth strain (SA1355). Thus, leakage of the periplasmic enzymes from the heptose-deficient strain occurs with or without growth. Mg2+ (0.75 mM), sodium chloride (50 mM), and sucrose (100 mM) in nutrient broth at 42 degrees C prevent the leakage of these enzymes. The shedding of LPS from the heptose-deficient as well as the smooth strains is enhanced by high temperature (42 degrees C), whereas considerable leakage of protein occurs only in the heptose-deficient strain at 42 degrees C and not in the smooth strain. The smooth and heptose-deficient strains are equally sensitive to osmotic shock although a significant proportion of acid phosphatase and cyclic phosphodiesterase activities from the heptose-deficient cells grown at 42 degrees C comes off in the Tris-NaCl wash step suggesting a rather loose attachment of these enzymes onto the cell surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.