Abstract

We study quasiparticle spectrum of the correlated quantum dot (QD) deposited on superconducting (SC) substrate which is side-coupled to the Rashba nanochain, hosting Majorana end modes. Ground state of an isolated QD proximitized to SC reservoirs is represented either by the singly occupied site or BCS-type superposition of the empty and doubly occupied configurations. Quantum phase transition between these distinct ground states is spectroscopically manifested by the in-gap Andreev states which cross each other at the Fermi level. This qualitatively affects leakage of the Majorana mode from the side-attached nanowire. We inspect the spin-selective relationship between the trivial Andreev states and the leaking Majorana mode, considering (i) perfectly polarized case, when tunneling of one spin component is completely prohibited, and (ii) another one when both spins are hybridized with the nanowire but with different couplings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.