Abstract

This paper presents a novel gate-sizing methodology to minimize the leakage power in the presence of process variations. The method is based on modeling the statistics of leakage and delay as posynomials functions to formulate a geometric-programming problem. The existing statistical leakage model is extended to include the variations in gate sizes, as well as systematic variations. Using a simplified delay model, we propose an efficient method to evaluate the alpha-percentile of path delays without enumerating the paths in a circuit. The complexity of evaluating the objective function of the optimization problem is O(|N| <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) and that of evaluating the delay constraints is O(|N| + |E|) for a circuit with |N| gates and |E| wires. The optimization problem is then solved using a convex optimization algorithm that gives an exact solution. The statistical optimization methodology is shown to provide as much as 15% reduction in the mean leakage power as compared to traditional worst case gate sizing with the same delay constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call