Abstract
The maize leafbladeless1 (lbl1) mutant displays a variety of leaf and plant phenotypes. The most extreme manifestation in the leaf is the formation of radially symmetric, abaxialized leaves due to a complete loss of adaxial cell types. Less severe phenotypes, resulting from a partial loss of adaxial cell identity, include the formation of ectopic laminae at the boundary between abaxialized, mutant sectors on the adaxial leaf surface and the bifurcation of leaves. Ectopic laminae and bifurcations arise early in leaf development and result in an altered patterning of the leaf along the proximodistal axis, or in complete duplication of the developing organ. Leaf-like lateral organs of the inflorescences and flowers show similar phenotypes. These observations suggest that Lbl1 is required for the specification of adaxial cell identity within leaves and leaf-like lateral organs. Lbl1 is also required for the lateral propagation of leaf founder cell recruitment, and plays a direct or indirect role in the downregulation of the homeobox gene, knotted1, during leaf development. Our results suggest that adaxial/abaxial asymmetry of lateral organs is specified in the shoot apical meristem, and that formation of this axis is essential for marginal, lateral growth and for the specification of points of proximodistal growth. Parallels between early patterning events during lateral organ development in plants and animals are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.