Abstract

Leaf mass per area (LMA) is a primary plant functional trait that represents the cost of constructing a leaf. Ultimately, plants modify LMA by altering leaf thickness (LT), leaf dry matter content (LDMC), or both. While LMA can be modified through both of these constituents, studies of LMA have found that there is variation in whether LT or LDMC changes are responsible for LMA-and the relationships change depending on the species or functional groups being compared. In this study, we used a phylogenetic framework to determine that evolutionary shifts in LMA are driven by LT, and not LDMC, among 45 Serengeti grass species. We considered two alternative hypotheses that could result in evolutionary correlation of LMA on LT but not LDMC: either (1) LT is more labile than LDMC-and is therefore a less costly means to change LMA or (2) LDMC is tightly coupled to a different dimension of leaf variation (e.g., leaf hydraulics), leaving LT as the source of variation in LMA. LT was not more labile than LDMC, leading us to conclude that the evolution of LMA has been shaped by LT because LDMC is responding to other demands on leaf physiology. We speculate that leaf hydraulics provide this constraint on LDMC. The decoupling of LDMC from LT may allow plants to better optimize resource allocation in ecosystems where gradients in light competition, herbivory, and aridity place competing demands on leaf economics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call