Abstract

As part of a continuing study of the effects of leaf surface wetness on gas exchange, the occurrence of leaf surface wetting by dewfall and associated effects on photosynthesis were evaluated for floating and aerial leaves of the pond lily Nuphar polysepalum Engelm. Because of nighttime radiation exchange with a cold sky, high humidity, and the presence of adaxial stomata, we predicted that pond lily leaves would be particularly susceptible to wetting events such as dewfall. A substantial reduction in net photosynthesis (up to 20%) occurred for leaves that were experimentally misted to simulate leaf wetting by dewfall. Aerial leaves remained below dewpoint temperatures for long periods on clear nights. However, floating leaves rarely approached dewpoint temperatures at night because minimum nighttime temperatures of leaves were up to 10 C warmer than air temperature. Thus, floating leaves of N. polysepalum did not experience dew formation primarily because of strong thermal coupling to a substrate (water) that was much warmer than air temperature at night. This coupling to a warmer substrate prevented a potentially strong inhibition of photosynthetic CO2 exchange the following morning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.