Abstract

Numerous seagrass species growing in high-light environments develop red coloration in otherwise green leaves, yet the ecophysiology of leaf reddening in seagrasses is poorly understood. To increase our understanding of the process of leaf reddening in Thalassia testudinum found in the lower Florida Keys (USA), we identified the molecules responsible for red coloration in leaves and compared physiological, morphological, and growth attributes of entirely red-leafed shoots to entirely green-leafed shoots. We determined that four anthocyanin molecules are responsible for red coloration in leaves. In addition, we found that red leaves had higher concentrations of photoprotective pigments (anthocyanins and UV-absorbing compounds), higher effective quantum yields (ΔF/Fm′) at midday, and were shorter, narrower, and weighed less than green leaves. No significant difference in growth rates was observed between red- and green-leafed shoots, but patches of red-leafed shoots had shorter canopy heights and smaller LAI compared to patches of green-leafed shoots. Our results demonstrate that leaf reddening in T. testudinum is caused by high concentrations of anthocyanins, is associated with physiological and morphological attributes, and acts as a sunscreen since red leaves were able to maintain high effective quantum yields at high light intensities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call