Abstract

‘Grasslands Huia’ white clover (Trifolium repens L.), ‘Grasslands Maku’ lotus (Lotus pedunculatus Cav.) and suckling clover (T. dubium Sibth) were grown in a controlled environment at various levels of P supply. Dry weights and the concentration of inorganic‐, lipid‐, ester‐ and residual‐P in trifoliate leaves were measured. Lotus grew better than white or suckling clover at low P. White clover and lotus responded steeply to increased P and had similar shoot dry weights at high P. Suckling clover had lower shoot weights than the other species at all P levels. The superior growth of lotus at low levels of p was probably due to better root growth and P uptake. Lotus had higher shoot P concentrations at low levels of P but lower concentrations than the others at high levels. White clover and suckling clover had similar shoot P concentrations at all levels of supply. In white and suckling clover total leaf P concentration rose with P supply. Of the P fractions, inorganic‐and residual‐P showed the largest rises in concentration. The increases in lipid‐ and ester‐P were smaller. Increases in lotus leaf P were small, primarily because of the relatively small rises in inorganic‐ and residual‐P. White clover is a vigorous species but requires high levels of P for best growth. Suckling clover has a relatively small response to improvements in P availability. The behaviour of the various P fractions is similar to that in white clover. Lotus grows well at low P but also shows rapid growth at high P supply. Whether efficiency is defined as the ability to extract P from the environment or to maintain low internal P concentration, lotus makes efficient use of P over the whole range of P supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.