Abstract

Low altitude hyperspectral observation systems provide us with leaf scale optical properties which are not affected by the atmospheric absorption and spectral mixing due to the long distance between the sensors and objects. However, it is difficult to acquire Lambert coefficients as inherent leaf properties because of the shading distribution in leaf scale hyperspectral images. In this paper, we propose an estimation method of Lambert coefficients by making good use of the shading distribution. The surface reflection of a set of leaves is modeled by a combination of dichromatic reflection under direct sunlight and reflection under the shadow of leaves. It is shown that hyperspectral distribution of leaves is composed of three linear clusters, i.e., specular, diffuse and shadowed clusters. Lambert coefficient is derived from the first eigenvector of diffuse cluster. Experimental results show that chlorophyll indices based on the estimated Lambert coefficients are consistent with the growth stages of paddy fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.