Abstract

The effect of a short (7 days) and prolonged (14 days) soil drought (D) on leaf optical properties (R reflectance, T transmittance and A absorbance) in PAR and NIR range of irradiation, and on changes in leaf water potential (ψ), leaf injury index (LI), leaf thickness (LT) and chlorophyll (a + b) content (Chl) was studied for maize and triticale genotypes differing in drought tolerance. Under control conditions (C) leaves of maize in comparison to triticale were better hydrated, were thicker and had higher content of chlorophyll (a + b). In non-stressed plants, small differences were observed in measurements of R, T and A. In the range from 500 to 600 nm, the differences between D-resistant and D-sensitive were observed only in transmittance (T) and in range from 700 to 1,100 nm in absorbance (A). In genotypes belonging to the group of D-sensitive T in PAR range and A in NIR range were two times higher than in D-resistant ones. However, in NIR range R for D-sensitive genotypes was lower than for D-resistant ones. The drought stress caused the decrease in ψ, Chl, LT and the increase in leaf injury index (LI). Soil drought applied within 14 days caused larger changes in these physiological characters in comparison to 7 days drought. The observed harmful influence of drought was more visible for maize than triticale. Moreover for genotypes belonging to D-sensitive ones, changes were larger than for D-resistant ones. Similar to changes in ψ, LT and LI drought stress caused changes in leaf optical properties parameters R, A and T. In the PAR range, the highest changes were observed in R, whereas changes in T and A, which were not considerable. Both in maize and triticale, increase in R was higher in plants subjected to 14 days drought than in plants exposed to drought for 7 days. In maize, increase in R was larger for D-sensitive genotype. For both species, changes in T and A of PAR range were small. In NIR range, an increase in R and A, and decrease in T were observed. After 7 days of recovery in plants subjected to shorter period of drought significant differences were still visible in most cases. The same was observed for ψ, LT, LI and Chl parameters. It shows that the period of 7 days rehydration is too short to remove the injuries caused by drought stress. This results indicate that measurements of R, T and A might be useful in practical application for the estimation of the drought tolerance level. Some limitations in the practical application for plant breeding may be caused by relatively high cost of necessary equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.