Abstract

Water relations, leaf morphology and the chemical composition of cell walls in irrigated and unirrigated plants of three durum wheat eultivars were measured at two growth stages (booting and flowering). Plant response to water stress differed at the two stages: cell wall elasticity increased at booting and osmotic potential values decreased at flowering; this may be due to the changes in stress history, leaf development and plant growth stage between the two harvests. Leaf tissue characteristics were modified by water stress only at flowering: accumulation of fibrous constituents and hemicellulose in the cell walls, reduction of acid detergent fiber (ADF) per unit of leaf area, increase in specific leaf weight (SLW), decrease in turgid weight/dry weight ratio (TW/DW) and alteration in mesophyll cell morphology (cell area / ceil perimeter ratio) were observed.Generally, cv. Valforte (the less drought‐resistant cultivar) had the greatest mesophyll cell area and perimeter and it had greater values of neutral detergent fiber (NDF) at the booting stage than cv. Appulo. Reactivity to water stress differed in the eultivars: Valforte showed the greatest increase in hemicellulose content and decrease in cell dimensions under drought at flowering.No significant relationships between osmotic potential and mesophyll cell characters were observed; there were no correlations among cell wall elasticity, cell morphology and the chemical components of leaf tissue. The total fiber content and the hemicellulose per unit of leaf area were correlated with the TW/DW ratio at flowering. This parameter decreased more in plants subjected to water stress owing to accumulation of hemicellulose. Correlations between leaf structural constituents and $$ suggest that the absorptive capacity of the cell wall may significally affect the osmotic volume of the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.