Abstract

In metabolic scaling theory the size-dependence of plant processes is described by a power function of form Y=Y o M θ where Y is a characteristic such as plant productivity that changes with plant size (M) raised to the θ th power and Y o is a normalization constant that adjusts the general relationship across environments and species. In essence, the theory considers that the value of θ arises in the size-dependent relationship between leaf area and vascular architecture that influences plant function and that Y o modulates this general relationship to account for ecological and evolutionary effects on the exchange of resources between plant and environment. Enquist and colleagues have shown from first principles that Y o is a function of carbon use efficiency, the carbon fraction of a plant, the area-specific carbon assimilation rate of a leaf, the laminar area of a leaf, and the mass of a leaf. We show that leaf longevity provides a functional integration of these traits that can serve as a simpler normalization in scaling plant productivity for individual species and potentially for mixed-species communities as well.

Highlights

  • Brown and Enquist [1] proposed a general theory for plant growth and primary production founded on the idea that the architecture of vascular systems controls the scaling of leaf surface area on plant size, which in turn governs the exchange of resources between plant and environment

  • Their original WBE theory set out a general framework for scaling this sizedependence of plant form and function: Y =Y0Mθ where Y is some characteristic such as respiration rate, leaf biomass or growth rate that changes with plant size (M) and Yo is a normalization constant that adjusts the general relationship across environments and species

  • We lay out a theoretical rationale to support the prediction of primary production for individual plants and in monospecific stands using an allometric function normalized by leaf longevity and the amount of leaves, and we make a preliminary test of the predictions using what few data are available

Read more

Summary

Introduction

Brown and Enquist [1] proposed a general theory for plant growth and primary production founded on the idea that the architecture of vascular systems controls the scaling of leaf surface area on plant size, which in turn governs the exchange of resources between plant and environment. We lay out a theoretical rationale to support the prediction of primary production for individual plants and in monospecific stands using an allometric function normalized by leaf longevity and the amount of leaves, and we make a preliminary test of the predictions using what few data are available.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.