Abstract

Litter fall and its decomposition rate play an important role in nutrient recycling, carbon budgeting and in sustaining soil productivity. Litter production and the decomposition rate were studied on commonly planted broad-leaved Eucalyptus (Eucalyptus globulus, Eucalyptus camaldulensis, Eucalyptus saligna) and coniferous (Juniperus procera, Cupressus lusitanica, Pinus patula) plantation species and compared with the adjacent broad-leaved natural forest. The production of litter was recorded by litter traps and the decomposition rate was studied by nylon net bag technique. Litter production under broad-leaved plantation species and natural forest (that varied from 9.7 to 12.6 Mg ha−1 y−1) was significantly higher (p<0.05) than that under coniferous species (that varied from 4.9 to 6.6 Mg ha−1 y−1). The average concentration of C and N in fresh mature leaves was higher than in leaf-litter fall, implying that both C and N were either sorbed in the plant system or lost through decomposition, leaching or erosion during the leaf-litter fall period. The amount of N, which potentially returned to the soil through the leaf-litter fall, tended to be higher in natural forest than in Eucalyptus plantations. The residual litter mass in the litter bag declined with time for all species. The annual dry matter decay constant (k) varied from 0.07 m−1 in Pinus patula to 0.12 m−1 in Eucalyptus saligna. The half-time (t0.5) decay varied from 6.0 for Eucalyptus saligna to 9.7 months for Pinus patula. The results suggest that the decomposition rate in Pinus patula was relatively lower than the other species and the litter production under broad-leaved Eucalyptus was comparatively higher than that in coniferous species. Overall the litter decomposition was fast for all species. The higher litter production and its relative faster rate of decomposition is a positive aspect to be considered during species selection for the restoration of degraded habitats given other judicious management practices such as prolonging the rotation period are adhered to.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call