Abstract

Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

Highlights

  • Litter decomposition is a fundamental biogeochemical process influencing rates of carbon and nutrient cycling in forest ecosystems (Perry, Oren & Hart, 2008)

  • We examined the decay of a common substrate across the mean annual temperature (MAT) gradient over a six-month time period to address two main research questions: (i) Does rising MAT increase rates of leaf litter decomposition in tropical montane wet forests when other environmental factors are held constant?; and (ii) does variation in MAT alter the rate of nitrogen (N) release from decomposing leaf litter in tropical montane wet forests?

  • Quantifying the temperature sensitivity of leaf litter decomposition and nutrient release is critical to understanding how forest ecosystem processes will respond to climate change

Read more

Summary

Introduction

Litter decomposition is a fundamental biogeochemical process influencing rates of carbon and nutrient cycling in forest ecosystems (Perry, Oren & Hart, 2008). One of the more tractable approaches to estimate the temperature sensitivity of litter decay in forests is through the use of elevation gradients, which can be powerful tools to examine climatic controls on ecosystem functioning (Malhi et al, 2010). Elevation gradients are seldom a perfect proxy for climate warming, because other factors that influence ecosystem processes may vary with elevation, including plant species composition, precipitation and soil moisture, geologic substrate, and soil chemical and physical properties. These potentially confounding factors can complicate efforts to isolate the influence of temperature on ecosystem functioning along elevation gradients (Wood, Cavaleri & Reed, 2012)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call