Abstract

In many terrestrial ecosystems, large amounts of leaf litter are consumed by macroarthropods. Most of it is deposited as faeces that are easily transferred into deeper soil layers. However, the decomposition of this large pool of organic matter remains poorly studied. We addressed the question of how leaf litter transformation into macroarthropod faeces, and their burial in the soil, affect organic matter decomposition in a Mediterranean dry shrubland. We compared mass loss of intact leaf litter of two dominant shrub species (Quercus coccifera, Cistus albidus) with that of leaf litter-specific faeces from the abundant millipede Ommatoiulus sabulosus. Leaf litter and faeces were exposed in the field for 1 year, either on the soil surface or buried at 5 cm soil depth. Chemical and physical quality of faeces differed strongly from that of leaf litter, but distinctively between the two shrub species. On the soil surface, faeces decomposed faster than intact leaf litter in Quercus, but at similar rates in Cistus. When buried in the soil, faeces and leaf litter decomposed at similar rates in either species, but significantly faster compared to the soil surface, most likely because of higher moisture within the soil enhancing microbial activity. The combined effects of leaf litter transformation into faeces and their subsequent burial in the topsoil led to a 1.5-fold increase in the annual mass loss. These direct and indirect macroarthropod effects on ecosystem-scale decomposition are likely more widespread than currently acknowledged, and may play a particularly important role in drought-influenced ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.