Abstract

Semiconductors, such as metal oxides and metal sulfides (MSX), are widely investigated as effectively catalytic materials to convert carbon dioxide (CO2) and water into chemicals under simulated solar light. These valuable investigations might address both the energy crisis and climate change in our modern society. Herein, a novel strategy to construct leaf-like heterojunctions of VS-ZnIn2S4/TiN-x is reported. The new semiconductor heterojunctions were then applied to photoelectrocatalytic CO2 reduction, achieving excellent performance (formate formation rate of 1173.2 μM h−1 cm−2) attributed to the plant cell-like morphology and enhanced electron mobility from the heterojunction interfaces to the active sites on the surface. Our findings suggest that titanium nitride (TiN) with good conductivity can improve the photoelectrocatalytic ability of MSX through heterojunction construction. The photocathode VS-ZnIn2S4/TiN-3 exhibits 81.0 % selectivity toward C2 products by optimizing the material structure and reaction conditions. According to the systematic investigation of operando Fourier transform infrared (FTIR) spectra, common intermediates such as *COO−, *COOH, *CO, *CHO, *COCHO, and *COCH3 reported in the literature were carefully verified. Among these, the carbene specie serve as the key intermediate responsible for generating other intermediates and resulting in all products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.