Abstract
The inherently small temperature difference in air environment restricts the applications of thermoelectric generation in the field of Internet of Things and wearable electronics. Here, a leaf‐inspired flexible thermoelectric generator (leaf‐TEG) that makes maximum use of temperature difference by vertically aligning poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate and constantan thin films is demonstrated. Analytical formulae of the performance scales, i.e., temperature difference utilization ratio (φ th) and maximum output power (P max), are derived to optimize the leaf‐TEG dimensions. In an air duct (substrate: 36 °C, air: 6 °C, air flowing: 1 m s−1), the 10‐leaf‐TEG shows a φ th of 73% and P max of 0.38 µW per leaf. A proof‐of‐concept wearable 100‐leaf‐TEG (60 cm2) generates 11 µW on an arm at room temperature. Furthermore, the leaf‐TEG is flexible and durable that is confirmed by bending and brushing over 1000 times. The proposed leaf‐TEG is very appropriate for air convection scenarios with limited temperature differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.