Abstract

Respiration processes are well recognized as fundamental for the plant carbon balance, but little attention has been paid to the relationships among respiration rates, environment and genetic variability. This can be of particular interest to understand the differences in net carbon balances in crops as grapevines. Night respiration (Rn ) and its associated growth (Rg ) and maintenance (Rm ) components were evaluated during leaf expansion in two grapevine cultivars (Tempranillo cv. and Garnacha cv.) that differ in their plant growth pattern and carbon balance. Simultaneously, leaf traits as leaf mass area, nitrogen (N) and carbon (C) content were evaluated in order to relate to the respiratory processes and the leaf growth. The results showed the differences in respiration rates associated with the leaf expansion pattern. Tempranillo developed leaves with higher leaf area and lower dry weight per leaf unit than Garnacha. Although differences between cultivars were observed in terms of growth costs in expanding leaves, the maintenance costs were similar for both cultivars. Also, a significant linear regression was found between respiration rates and N content in expanding and mature leaves. The results indicate that differences in structure and nitrogen content of expanding leaves may lead to respiratory differences between cultivars. These results also demonstrate the importance of respiratory cost components in carbon balance calculations in grapevines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.