Abstract

Summary Leaf gas exchange responses to elevated CO2 and N are presented for 13 perennial species, representing four functional groups: C3 grasses, C4 grasses, legumes, and nonleguminous forbs. Understanding how CO2 and N effects interact is important to predict plant community response to global change. Plants were field‐grown in monoculture under current ambient and elevated (560 µmol mol−1) CO2 concentrations (free‐air CO2 enrichment), in combination with soil N treatments, for two growing seasons. All species, regardless of functional group, showed pronounced photosynthetic acclimation to elevated CO2, resulting in minimal stimulation of photosynthesis (A) averaging +15% in C3 grasses, +8% in forbs, +7% in legumes and −2% in C4 grasses. The effects of CO2 and soil N supply did not interact for any leaf traits measured. Elevated CO2 consistently decreased stomatal conductance (gs) leading to 40% increase in A/gs. This substantial acclimation of photosynthesis was greater in magnitude than in most field studies, and was associated with the combined effects of decreased gs and decreased leaf N concentrations in response to growth under elevated CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.