Abstract

Seedlings of Taxodium distichum L., Quercus lyrata Walt. and Q. falcata var. pagodaefolia Ell. were grown for 22 days in a rhizotron system providing two soil redox potential regimes, +170 mV (low Eh) and +560 mV (high Eh). Leaf chlorophyll concentration and gas exchange, root alcohol dehydrogenase (ADH) activity, root and leaf ethylene production, and growth and biomass partitioning were measured. In response to the low Eh soil treatment, stomatal conductance was reduced in Q. falcata and Q. lyrata but not in T. distichum, whereas net photosynthesis was reduced significantly in all species; however, net photosynthesis in T. distichum began to recover within 2 weeks of treatment initiation. Within each treatment, mean stomatal conductance and net photosynthesis were significantly greater in T. distichum than in the oak species. Leaf chlorophyll concentration was not affected by the soil treatments. All species showed significant reductions in root and leaf dry weights in response to the low Eh soil condition. The low Eh soil treatment resulted in increased root ADH activity and ethylene production in T. distichum, but had no effect on root ADH activity and ethylene production in the oak species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.