Abstract
This study investigated the effect of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal CO2 concentration [Ci], and transpiration rate [E]) and chlorophyll fluorescence a parameters (maximum quantum quenching [Fv/Fm and Fv'/Fm'], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]) in wheat plants grown in a nutrient solution containing 0 mM (-Si) or 2 mM (+Si) Si and noninoculated or inoculated with Pyricularia oryzae. Blast severity decreased due to higher foliar Si concentration. For the inoculated +Si plants, A, gs, and E were significantly higher in contrast to the inoculated -Si plants. For the inoculated +Si plants, significant differences of Fv/Fm between the -Si and +Si plants occurred at 48, 96, and 120 h after inoculation (hai) and at 72, 96, and 120 hai for Fv'/Fm'. The Fv/Fm and Fv'/Fm', in addition to total chlorophyll concentration (a + b) and the chlorophyll a/b ratio, significantly decreased in the -Si plants compared with the +Si plants. Significant differences between the -Si and +Si inoculated plants occurred for qP, NPQ, and ETR. The supply of Si contributed to decrease blast severity in addition to improving gas exchange performance and causing less dysfunction at the photochemical level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.