Abstract

To understand the adaptative strategies of different tree species to drought and nutrient-deficient environment in coastal sandy site, leaf functional traits and nutrient resorption of four major silviculture tree species, i.e., Casuarina equisetifolia, Pinus elliottii, Acasia crassicarpa and Eucalyptus urophylla × E. grandis were analyzed. Leaf area and specific leaf area of coniferous species (C. equisetifolia and P. elliottii) were significantly lower, and leaf dry matter content and leaf thickness were significantly higher than those of broadleaved species (A. crassicarpa and E. urophy-lla × E. grandis). Nitrogen and P contents of mature leaf and leaf litter in broadleaved species were higher than those in coniferous species. Nitrogen and P contents of mature leaf were higher than those in leaf litter, but N:P was lower than that in leaf litter. Nitrogen and P resorption efficiencies were higher in coniferous species than those in broadleaved species. The P resorption efficiency in all species was significantly higher than N resorption efficiency. The N resorption efficiency of C. equisetifolia, P. elliottii, A. crassicarpa and E. urophylla × E. grandis was 64.2%, 63.1%, 47.0% and 16.8%, and the P resorption efficiency was 92.5%, 81.6%, 80.3% and 18.0%, respectively. The specific leaf area was significantly positively correlated with leaf N and P contents, but negatively correlated with leaf dry matter content, leaf thickness, and nutrient resorption efficiency. Leaf dry matter content was significantly positively correlated with leaf thickness and nutrient resorption efficiency. Therefore, C. equisetifolia and P. elliottii belonged to slow investment species with a higher nutrient resorption efficiency, while A. crassicarpa and E. urophylla × E. grandis belonged to fast investment species with lower nutrient resorption efficiency. Different tree species developed different adaptive strategies to coastal sandy environments through the interactions between leaf functional traits and nutrient resorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.