Abstract

We monitored differences in rates of foliar carbon-compound increases with progressive drought as an indicator of sink limitation status and subsequent drought tolerance. We postulate that species which increase foliar carbohydrates and protein-precipitable phenolics (PPP) more quickly than related species over the same time period and drought conditions have stronger sink limitations and are therefore less drought tolerant. Quercus macrocarpa, Q. shumardii, and Q. virginiana saplings were subjected to two treatments for approximately 3.5 months: (1) watered, which received the equivalent of average weekly precipitation for College Station, TX, USA, and (2) droughted, in which precipitation was reduced by 100%. Q. virginiana’s photosynthesis (A) and stomatal conductance (gs) were 44 and 54% greater, respectively, than the other species in the drought treatment. Q. virginiana’s gs also increased more dramatically with watering and subsequent increases in predawn leaf water potential. This plasticity suggests Q. virginiana is best equipped to deal with sporadic rainfall events and soil moisture changes, at least in the short term. Results indicate that the three species allocate carbon from photosynthate in different ways. Q. shumardii had the most soluble sugar in its foliage but had the least PPP, while Q. virginiana and macrocarpa had more PPP and less sugar than Q. shumardii. Diameter:height growth rate was greatest in Q. shumardii. Foliar protein-precipitable phenolic content appears to be more affected by factors other than drought. Differences in species’ physiological responses to drought may result in stand composition shifts with future climate alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call