Abstract
Leaf expansion and growth response of sunflower (Helianthus annuus, L.) to soil compaction were investigated in relation to compaction effects on water relations, nitrogen nutrition, and photosynthesis. A series of field experiments were conducted with plants grown in 20 cm-diameter cylinders with soil bulk densities ranging from 1.2 to 1.7 g cm−3 at the 0–20 cm depth (equivalent to 0.8 to 2.4 MPa soil strength measured with a soil penetrometer). Relative leaf expansion rate (RLER) decreased linearly with increasing soil strength. Smaller plant size in compacted treatments was due not only to slower expansion rates, but also smaller maximum size of individual leaves. Sensitivity of leaf expansion to soil strength was best illustrated by a reduction in RLER and maximum size of the first leaf to emerge in a treatment with only the lower 10–20 cm of the profile compacted (bulk density of 1.7 g cm−3). Root growth was less affected than shoot growth by compaction and root:shoot ratios of compacted treatments were significantly higher than the control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.