Abstract

Leaves of plants of several families possess small cavities or tufts of hair where leaf veins bifurcate. These so-called acarodomatia are usually inhabited by predatory and fungivorous mites, which utilize domatia as shelter against adverse conditions or against other predators and cannibals. Plants may benefit from the presence of the mites through reduced densities of herbivores or plant-pathogenic fungi. It has therefore been suggested that domatia mediate a mutualistic interaction between plants and mites. We tested the hypothesis that cavity-like domatia on coffee plants benefit the predatory mite Iphiseiodes zuluagai through providing protection against adverse weather conditions and other predators in three field experiments. We manipulated plant domatia by blocking all on one group of plants, whereas a second group of plants with open natural domatia served as a control. Predatory mite populations were provided with pollen as a food source during part of two experiments. Experiments were done in the dry and rainy season to test the effects of adverse weather conditions and with or without an insect glue barrier on the plant to prevent access of ground-dwelling hyperpredators. High temperatures had a significant negative effect on predator densities in all experiments, whereas rainfall and humidity affected densities in one and two experiments respectively. None of the experiments showed a significant effect of domatia manipulation on mite numbers, or a significant interaction between weather parameters and domatia, suggesting that domatia did not protect against these adverse weather conditions. Nevertheless, predatory mites were frequently observed inside the domatia, suggesting that the mites benefit from using domatia. Perhaps domatia offer protection against hyperpredators, which were rarely observed during our experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.