Abstract
Abstract: The aim of the project is to develop a Leaf disease detection system using deep learning, specifically Convolutional Neural Networks (CNNs). The project focuses on classifying images of plant leaves into 39 different disease categories by utilizing deep learning, specifically Convolutional Neural Networks (CNNs), for plant disease detection based on leaf images. The dataset consists of 39 classes with a totalof 61,486 images, and various augmentation techniques are applied to increase dataset size. The implementation involves PyTorch, with transformations for data augmentation, dataset creation usingImage Folder, and a split into training, validation, and testing sets. The CNN model is designed for image classification, using ReLU activation and soft max for the final layer. The training process involves batch gradient descent, and the model achieves an accuracy of 87% on training data, 84% on validation data, and 83% on test data. The key objectives include utilizing image data, implementing data augmentation techniques, creating a dataset, and training a CNN model to accurately predict and classify plant diseases based on input images. The ultimate goal is to provide a tool that can assist in early detection and diagnosis of plant diseases through automated analysis of leaf images
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.