Abstract

Decomposition of Alnus rugosa and Myrica Gale leaves immersed in artificial stream channels fed by a small headwater creek was followed over a three month period. At the end of experiment, remaining weights of both leaf types confined in litter bags were significantly higher after immersion in experimentally acidified water (pH 4.0) than when immersed in control water (pH 6.2–7.0). For both types of leaves and for all sampling times, there was generally no difference in the C:N ratios between leaves in acidified and those in control water. In control water, oxygen uptake by microorganism on A. rugosa leaves was significantly higher after 46 days of immersion, whereas differences between treatments appeared only after 69 days for M. Gale leaves. Transfer of A. rugosa leaves from acid to control water led to a rapid increase in microbial activity; this increased activity was reflected in a fast weight loss of the leaves. For both leaf types, total numbers of macroinvertebrates were usually higher in litter bags immersed in control water. Macroinvertebrates colonizing the litter bags were mainly collector-gatherers: Chironomidae were numerically dominant in control leaf packs whereas Oligochaeta dominated in acid leaf packs. Macroinvertebrate biomass in M. Gale litter was higher in control than in acidified water, which contrasted with macroinvertebrate biomass in A. rugosa leaf packs which was not significantly different between treatments. Macroinvertebrate contribution to the breakdown of leaf litter was thus considered less important than the microbial contribution. This study demonstrated that decomposition of leaf litter in acidic headwater streams can be seriously reduced, mainly as a result of a lower microbial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.