Abstract

In July 1993, we measured leaf conductance, carbon dioxide (CO(2)) assimilation, and transpiration in a Larix gmelinii (Rupr.) Rupr. ex Kuzen forest in eastern Siberia. At the CO(2) concentration of ambient air, maximum values (mean of 10 highest measured values) for CO(2) assimilation, transpiration and leaf conductance for water vapor were 10.1 micro mol m(-2) s(-1), 3.9 mmol m(-2) s(-1) and 365 mmol m(-2) s(-1), respectively. The corresponding mean values, which were much lower than the maximum values, were 2.7 micro mol m(-2) s(-1), 1.0 mmol m(-2) s(-1) and 56 mmol m(-2) s(-1). The mean values were similar to those of Vaccinium species in the herb layer. The large differences between maximum and actual performance were the result of structural and physiological variations within the tree crowns and between trees that reduced maximum assimilation and leaf conductance by about 40 and 60%, respectively. Thus, maximum assimilation and conductance values averaged over the canopy were 6.1 micro mol m(-2) s(-1) and 146 mmol m(-2) s(-1), respectively. Dry air caused stomatal closure, which reduced assimilation by an additional 26%. Low irradiances in the morning and evening had a minor effect (-6%). Daily canopy transpiration was estimated to be 1.45 mm day(-1), which is higher than the value of 0.94 mm day(-1) measured by eddy covariance, but similar to the value of 1.45 mm day(-1) calculated from the energy balance and soil evaporation, and less than the value of 2.1 mm day(-1) measured by xylem flux. Daytime canopy carbon assimilation, expressed on a ground area basis, was 0.217 mol m(-2) day(-1), which is higher than the value measured by eddy flux (0.162 mol m(-2) day(-1) including soil respiration). We discuss the regulation of leaf gas exchange in Larix under the extreme climatic conditions of eastern Siberia (temperature > 35 degrees C and vapor pressure deficit > 5.0 kPa).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.