Abstract

One-year-old 'Cleopatra mandarin' (Citrus reticulata Blanco) seedlings were raised in a greenhouse and fertilized with nitrogen (N) at four application frequencies. Nitrogen-deficient leaves (86 mmol N m-2) had less chlorophyll per unit area, but a greater chlorophyll a:b ratio than N-fertilized leaves (> 187 mmol N m-2). Leaf dry mass per area (DM area-1) and total chlorophyll concentration increased linearly with increasing leaf N, whereas chlorophyll a:b ratio declined. Net assimilation of CO2 (A(CO2)) and leaf water-use efficiency (WUE) reached maximum values in leaves with approximately 187 mmol N m-2. Nitrogen-deficient leaves exhibited small chloroplasts with no starch granules; grana and stroma lamellae that coincided with the accretion of numerous large plastoglobuli in the stroma disintegrated. High-N leaves had large chloroplasts with well-developed grana, stroma lamellae and starch granules that enlarged with increasing N concentration. The lack of an increase in A(CO2) capacity at leaf N concentrations above 187 mmol N m-2 appeared to be correlated with the presence of numerous large starch granules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.