Abstract

Trees typically experience large diurnal depressions in water potential, which may impede carbon export from leaves during the day because the xylem is the source of water for the phloem. As water potential becomes more negative, higher phloem osmotic concentrations are needed to draw water in from the xylem. Generating this high concentration of sugar in the phloem is particularly an issue for the ∼50% of trees that exhibit passive loading. These ideas motivate the hypothesis that carbon export in woody plants occurs predominantly at night, with sugars that accumulate during the day assisting in mesophyll turgor maintenance or being converted to starch. To test this, diurnal and seasonal patterns of leaf nonstructural carbohydrates, photosynthesis, solute, and water potential were measured, and carbon export was estimated in leaves of five mature (>20 m tall) red oak (Quercus rubra) trees, a species characterized as a passive loader. Export occurred throughout the day at equal or higher rates than at night despite a decrease in water potential to -1.8 MPa at midday. Suc and starch accumulated over the course of the day, with Suc contributing ∼50% of the 0.4 MPa diurnal osmotic adjustment. As a result of this diurnal osmotic adjustment, estimates of midday turgor were always >0.7 MPa. These findings illustrate the robustness of phloem functioning despite diurnal fluctuations in leaf water potential and the role of nonstructural carbohydrates in leaf turgor maintenance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.