Abstract
The leaf area index (LAI) is an important vegetation biophysical index that provides broad information on the dynamic behavior of an ecosystem’s productivity and related climate, topography, and edaphic impacts. The spatiotemporal changes of LAI were assessed throughout Ardabil Province—a host of relevant plant communities within the critical ecoregion of a semi-arid climate. In a comparative study, novel data from Google Earth Engine (GEE) was tested against traditional ENVI measures to provide LAI estimations. Moreover, it is of important practical significance for institutional networks to quantitatively and accurately estimate LAI, at large areas in a short time, and using appropriate baseline vegetation indices. Therefore, LAI was characterized for ecoregions of Ardabil Province using remote sensing indices extracted from Landsat 8 Operational Land Imager (OLI), including the Enhanced Vegetation Index calculated in GEE (EVIG) and ENVI5.3 software (EVIE), as well as the Normalized Difference Vegetation Index estimated in ENVI5.3 software (NDVIE). Moreover, a new field measurement method, i.e., the LaiPen LP 100 portable device (LP 100), was used to evaluate the accuracy of the derived indices. Accordingly, the LAI was measured in June and July 2020, in 822 ground points distributed in 16 different ecoregions-sub ecoregions having various plant functional types (PFTs) of the shrub, bush, and tree. The analyses revealed heterogeneous spatial and temporal variability in vegetation indices and LAIs within and between ecoregions. The mean (standard deviation) value of EVIG, EVIE, and NDVIE at a province scale yielded 1.1 (0.41), 2.20 (0.78), and 3.00 (1.01), respectively in June, and 0.67 (0.37), 0.80 (0.63), and 1.88 (1.23), respectively, in July. The highest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June are found in Meshginshahr (1.40), Meshginshahr (2.80), and Hir (4.33) ecoregions and in July are found in Andabil ecoregion respectively with values of 1.23, 1.5, and 3.64. The lowest mean values of EVIG-LAI, EVIE-LAI, and NDVIE-LAI in June were observed for Kowsar (0.67), Meshginshahr (1.8), and Neur (2.70) ecoregions, and in July, the Bilesavar ecoregion, respectively, with values of 0.31, 0.31, and 0.81. High correlation and determination coefficients (r > 0.83 and R2 > 0.68) between LP 100 and remote sensing derived LAI were observed in all three PFTs (except for NDVIE-LAI in June with r = 0.56 and R2 = 0.31). On average, all three examined LAI measures tended to underestimate compared to LP 100-LAI (r > 0.42). The findings of the present study could be promising for effective monitoring and proper management of vegetation and land use in the Ardabil Province and other similar areas.
Highlights
In the preliminary, the results of the vegetation indices used for leaf area index (LAI) assessment and the LAI extracted maps for the Ardabil Province are depicted in Figures 4 and 5
The results showed that the correlation between remote sensing estimations and terrestrial data was positive in the tree plant functional types (PFTs) and negative in the bush and shrub PFTs (Figures 6 and 7)
Given that the satellite imagery calculates the LAI from plant reflections and the LP 100 portable device (LP 100) calculates the LAI based on light passing through the leaves of trees, it is speculated that the LP 100 LAI measurements in the tree PFT was affected by the shadow of the trees, and it performed similar to the remote sensing method
Summary
Leaf area is the main component in the exchange of matter and energy between tree canopies and the atmosphere, and is considered an important ecological and biological. The green leaf area could account for the largest part of the plant canopy, which is one of the key factors in the net primary production of the ecosystem, and the exchange of energy between the Earth’s surface and the atmosphere [11]. It fundamentally affects the canopy reflectance [11]. LAI measurement is essential to understand the interactions between plant growth and the environment [12]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.