Abstract

Desert plants evolve different photosynthetic organs to adapt to the extreme environment. We studied the leaf and canopy gas exchange, chlorophyll content, fluorescence parameters, and anatomical structure of different photosynthetic organs (leaf and assimilating stem) on four desert plants (Nitraria sphaerocarpa, Caragana korshinskii, Haloxylon ammodendron, and Calligonum mongolicum). The results showed a higher net photosynthetic rate (PN) in the assimilating stems of H. ammodendron and C. mongolicum, which also had a higher light saturation point and a lower light compensation point than leaves (N. sphaerocarpa and C. korshinskii), suggesting more efficient solar energy utilization in the former. Within each species, canopy apparent photosynthetic rate (CAP) was significantly lower than PN, and the daily average CAP of the assimilating stems was significantly higher than leaves. These findings indicated that the photosynthetic response of desert plants was specific to photosynthetic organs. We concluded that the assimilating stem was a superior adaption for desert plants to survive the arid environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.