Abstract
Anatomical adaptations to high-salinity environments in mangrove leaves may be recorded in leaf water isotopes. Recent studies observed lower 18 O enrichment (ΔL ) of leaf water with respect to source water in three mangrove species relative to adjacent freshwater trees, but the factors that govern this phenomenon remain unclear. To resolve this issue, we investigated leaf traits and ΔL in 15 species of true mangrove plants, 14 species of adjacent freshwater trees, and 4 species of semi-mangrove plants at five study sites along south-eastern coast of China. Our results confirm that ΔL was generally 3-4‰ lower for mangrove species than for adjacent freshwater or semi-mangrove species. We hypothesized that higher leaf water content (LWC) and lower leaf stomatal density (LS) both played important roles in reducing ΔL in mangroves relative to nearby freshwater plants. Both differences acted to elongate effective leaf mixing length (L) in mangroves by about 200% and lower stomatal conductance by about 30%. Péclet models based on both LWC and LS could accurately predict ΔL . Our findings highlight the potential species-specific anatomical determinants of ΔL (or L), which has important implications for the interpretation of environmental information from metabolites produced by leaf water isotopes in palaeoclimate research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.