Abstract

ObjectiveAcademic medical centers and health systems are increasingly challenged with supporting appropriate secondary use of clinical data. Enterprise data warehouses have emerged as central resources for these data, but often require an informatician to extract meaningful information, limiting direct access by end users. To overcome this challenge, we have developed Leaf, a lightweight self-service web application for querying clinical data from heterogeneous data models and sources.Materials and MethodsLeaf utilizes a flexible biomedical concept system to define hierarchical concepts and ontologies. Each Leaf concept contains both textual representations and SQL query building blocks, exposed by a simple drag-and-drop user interface. Leaf generates abstract syntax trees which are compiled into dynamic SQL queries.ResultsLeaf is a successful production-supported tool at the University of Washington, which hosts a central Leaf instance querying an enterprise data warehouse with over 300 active users. Through the support of UW Medicine (https://uwmedicine.org), the Institute of Translational Health Sciences (https://www.iths.org), and the National Center for Data to Health (https://ctsa.ncats.nih.gov/cd2h/), Leaf source code has been released into the public domain at https://github.com/uwrit/leaf.DiscussionLeaf allows the querying of single or multiple clinical databases simultaneously, even those of different data models. This enables fast installation without costly extraction or duplication.ConclusionsLeaf differs from existing cohort discovery tools because it does not specify a required data model and is designed to seamlessly leverage existing user authentication systems and clinical databases in situ. We believe Leaf to be useful for health system analytics, clinical research data warehouses, precision medicine biobanks, and clinical studies involving large patient cohorts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.