Abstract

Background: The Nanostim {trade mark, serif} Leadless Cardiac Pacemaker (LCP) has been shown to be safe and effective in human clinical trials. Since there is little information on the effect of implant location on LCP performance, the aim of this study was to determine whether anatomic position affects the long-term pacing performance of the LCP. Methods: Patients who enrolled in the Leadless II IDE Clinical Trial and had finished 6 months follow up (n = 479) were selected for the study. The implanting investigators determined the LCP final position under fluoroscope, which was categorized into three groups: RV apex (RVA, n = 174), RV apical septum (RVAS, n = 101), and RV septum (RVS, n = 204) (Figure 1). Data on capture threshold (at a 0.4 ms pulse width), R-wave amplitude and impedance were analyzed at implant, hospital discharge and 2 weeks, 6 weeks, 3 months and 6 months post-implant. Results: At implant, the mean capture thresholds in the RVA, RVAS and RVS were 0.77 ± 0.45, 0.81 ± 0.61 and 0.78 ± 0.59 volts, respectively. R-wave amplitudes were 8.0 ± 3.0 mV, 7.7 ± 2.9 mV and 7.6 ± 2.9 mV, respectively. Impedance values were 727 ± 311, 765 ± 333, and 677 ± 227 respectively. There were no differences among the 3 implant locations in capture threshold or R-wave amplitudes at 6 months (P > 0.06); however, all 3 performance parameters significantly improved over time (P < 0.001). Conclusions: The LCP implant location does not affect capture thresholds or R-wave amplitudes at 6 months, and there is little effect on impedance. Although implant location does not appear to be a predictor of electrical performance, additional long-term data will help guide optimal implant location.

Highlights

  • The permanent leadless cardiac pacemaker (LCP) has been shown to be safe and effective in human clinical trials [1, 3, 4]

  • Avoiding the RV apex as an implanting location theoretically might decrease the risk of perforation, implanters may be hesitant to implant the Leadless Cardiac Pacemaker (LCP) higher on the RV septum due to the fear of increased pacing thresholds or poor sensing amplitudes that may compromise the performance of the device and/or decrease its longevity

  • Since there is no information as to how implant location affects LCP performance, the purpose of this study was to determine the impact of anatomical position of the LCP on the long-term electrical performance of the LCP

Read more

Summary

Introduction

The permanent leadless cardiac pacemaker (LCP) has been shown to be safe and effective in human clinical trials [1, 3, 4]. Since there is no information as to how implant location affects LCP performance, the purpose of this study was to determine the impact of anatomical position of the LCP on the long-term electrical performance of the LCP. This might allow easier technique in LCP delivery, implantation; and probably decrease the procedure time, complication, and risk of sedation. Conclusions: The LCP implant location does not affect capture thresholds or R-wave amplitudes at 6 months, and there is little effect on impedance. Implant location does not appear to be a predictor of electrical performance, additional long-term data will help guide optimal implant location

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call