Abstract

The leading Pollicott-Ruelle resonance is calculated analytically for a general class of two-dimensional area-preserving maps. Its wave number dependence determines the normal transport coefficients. In particular, a general exact formula for the diffusion coefficient D is derived without any high stochasticity approximation, and a new effect emerges: The angular evolution can induce fast or slow modes of diffusion even in the high stochasticity regime. The behavior of D is examined for three particular cases: (i) the standard map, (ii) a sawtooth map, and (iii) a Harper map as an example of a map with a nonlinear rotation number. Numerical simulations support this formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.