Abstract

An advanced digital filter method is presented to generate divergence-free synthetic turbulence with homogeneous anisotropic velocity spectra. The resulting fluctuating velocity field is obtained through a superposition of anisotropic Gaussian eddies. This method is used to generate a two-dimensional turbulent flow with the key statistics of homogeneous axisymmetric turbulence. This type of turbulence has been reported in aero-engine intakes, fan wakes and open-jet wind tunnel experiments. The advanced digital filter method is implemented in a linearized Euler solver in order to investigate potential effects of anisotropic turbulence on leading edge noise. Computational aeroacoustic simulations are performed for anisotropic turbulence with streamwise-to-transverse length scale ratios ranging from 0.33 to 3 on a number of isolated airfoil configurations, including variations in mean flow Mach number, airfoil thickness and angle of attack. Noise reduction due to airfoil thickness is assessed on a NACA 0012 airfoil at zero angle of attack, showing similar trends for both isotropic and moderately anisotropic turbulent flows. Effects of anisotropic turbulence on noise become evident for airfoil configurations at non-zero angle of attack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call