Abstract

We present a model for actin-based motility that combines the dynamics of the semiflexible region at the leading edge of the lamellipodium with actomyosin gel properties in the bulk described by the theory of active polar gels. We calculate the velocity of the lamellipodium determined by the interaction of the gel and adhesion with forces in the semiflexible region. The stationary concave force-velocity relation of the model reproduces experimental results. We suggest that it is determined by retrograde flow at small forces and gel formation and retrograde flow at large ones. The variety of dynamic regimes of the semiflexible region reproducing experimentally observed morphodynamics is conserved when we couple the leading edge to the gel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.