Abstract

This study investigates the role of leading-edge (LE) curvature in flapping wing aerodynamics considering hovering and forward flight conditions. A scaled-up robotic model is towed along its longitudinal axis by a rack gear carriage system. The forward velocity of the robotic model is changed by varying the advance ratio J from 0 (hovering) to 1.0. The study reveals that the LE curvature has insignificant influence on the cycle-average aerodynamic lift and drag. However, the time-history lift coefficient shows that the curvature can enhance the lift around the middle of downstroke. This enhanced lift is reduced from 5% to 1.2% as J changed from 0 to 1.0. Further flow examinations reveal that the LE curvature is beneficial by enhancing circulation only at the outboard wing sections. The enhanced outboard circulation is found to emanate from the less stretched leading-edge vortices (LEVs), weakened trailing-edge vortices (TEVs), and the coherent merging of the tip vortices (TVs) with the minor LEVs as observed from the phase-lock planar digital particle image velocimetry (DPIV) measurements. The far-wake observation shows that the LE curvature enhances the vorticity within the TV, helping to reduce the overall flow fluctuations in the far field. These findings can be extended to explain the predominantly straight LE wing shape of most flapping fliers with a small amount of curvature only observed near the wing tip.&#xD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call