Abstract

The effect of electric poling on the piezoelectric properties of the sintered Na0.4K0.1Bi0.5TiO3 is studied with varying poling field and temperature. An optimized poling condition (EP =50 kVcm, TP =110 °C) exhibited a high piezoelectric voltage (g33∼ 85 mV m/N) and charge coefficients (d33∼193pC/N). A combination of electric field induced irreversible transformation from polar nano regions embedded in a non-polar relaxor state to a long-range ordered ferroelectric state and increase in the structural ordering are responsible for the observed high piezoelectric properties. A mechanism is discussed to reveal the origin of high voltage coefficient due to poling, where the decrease of dielectric permittivity can facilitate high g33. This investigation provides an approach for designing the high performance Na0.4K0.1Bi0.5TiO3based materials suitable for sensors and energy harvesting applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call