Abstract

Lead toxicity is hindering the applications of conventional lead halide perovskites (PVKs), and antimony (Sb) is a promising nontoxic Pb alternative, showing huge potential in optoelectronic devices. Herein, pure and Mn-doped Cs3Sb2Cl9 crystals are synthesized in a facile route and studied both experimentally and theoretically. All the pure and Mn-doped Cs3Sb2Cl9 crystals show good crystallinity and similar crystal structures, exhibiting visible photoluminescence (PL) characteristics with emission peaks at 422 and 613 nm, respectively. Combined density functional theory (DFT) calculations and experimental analyses reveal that the structure of the host PVK compound Cs3Sb2Cl9 is not influenced by the formation of [MnCl6]4- octahedra and that Mn 3d orbitals generate impurity states in the forbidden energy gap of Cs3Sb2Cl9. Therefore, energy transfer from Cs3Sb2Cl9 to Mn 3d states is observed, resulting in the d-d transition and bright red luminescence. Mn-doped Sb-based PVK can be utilized as a new platform for optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.